sPlot open - An environmentally-balanced, open-access, global dataset of vegetation plots

This manuscript is still work in progress

This manuscript (permalink) was automatically generated from fmsabatini/sPlotOpen_Manuscript@0f8d658 on October 30, 2020.

Authors

ORCID iconFrancesco Maria Sabatini1,2,†, ORCID iconJonathan Lenoir3,†, ORCID iconTarek Hattab4, Elise Arnst5, ORCID iconMilan Chytrý6, ORCID iconJürgen Dengler7,8,9, Valério De Patta Pillar10, Patrice De Ruffray11, Stephan M. Hennekens12, Ute Jandt2, Florian Jansen13, ORCID iconBorja Jiménez-Alfaro14, ORCID iconJens Kattge15, Aurora Levesley16, ORCID iconOliver Purschke17, Brody Sandel18, Fahmida Sultana19, Svetlana Aćić20, ORCID iconEmiliano Agrillo21, ORCID iconMiguel Alvarez22, Iva Apostolova23, ORCID iconMohammed A.S. Arfin Khan24, Isabelle Aubin25, Marijn Bauters26,27, ORCID iconYves Bergeron28, ORCID iconErwin Bergmeier29, ORCID iconIdoia Biurrun30, Anne D. Bjorkman31, ORCID iconLaura Casella32, ORCID iconLuis Cayuela33, Tomáš Černý34, ORCID iconVictor Chepinoga35, János Csiky36, Renata Ćušterevska37, Els De Bie38, ORCID iconMichele De Sanctis21, Panayotis Dimopoulos39, Mohamed Abd El-Rouf Mousa El-Sheikh40,41, Brian Enquist42, Manfred Finckh43, Emmanuel Garbolino44, ORCID iconMelisa Giorgis45, Valentin Golub46, ORCID iconAlvaro G. Gutierrez47, Mohamed Z. Hatim48, Guillermo Hinojos Mendoza49, ORCID iconNorbert Hölzel50, Jürgen Homeier51, Wannes Hubau52,53, Adrian Indreica54, John Janssen12, Birgit Jedrzejek55, ORCID iconNorbert Jürgens43, Zygmunt Kącki56, ORCID iconAli Kavgacı57, ORCID iconElizabeth Kearsley58, ORCID iconMichael Kessler59, Andrey Korolyuk60, Hjalmar Kühl9,61, ORCID iconFlavia Landucci62, Hongyan Liu63, Tatiana Lysenko64, ORCID iconCorrado Marcenò30, ORCID iconJesper Erenskjold Moeslund65, Jonas V. Müller66, ORCID iconJérôme Munzinger67, Jalil Noroozi68, ORCID iconArkadiusz Nowak69, Viktor Onyshchenko70, ORCID iconGerhard E. Overbeck71, Aníbal Pauchard72, Robert K. Peet73, ORCID iconAaron Pérez-Haase74,75, Tomáš Peterka62, Gwendolyn Peyre76, ORCID iconOliver L. Phillips16, Vadim Prokhorov77, Valerijus Rašomavičius78, Rasmus Revermann43, John S. Rodwell79, Eszter Ruprecht80, Solvita Rūsiņa81, Cyrus Samimi82, Joop H.J. Schaminée12, ORCID iconMarco Schmidt83, ORCID iconUrban Šilc84, Željko Škvorc85, Anita Smyth86, Zvjezdana Stančić87, Zhiyao Tang63, Ioannis Tsiripidis88, Milan Valachovič89, Kim André Vanselow90, Kiril Vassilev23, ORCID iconEduardo Vélez-Martin91, ORCID iconRoberto Venanzoni92, Alexander Christian Vibrans93, ORCID iconRisto Virtanen9,94,95, Henrik von Wehrden96, Viktoria Wagner97, Donald A. Walker98, Desalegn Wana99, Karsten Wesche9,100,101, Timothy Whitfeld102, Wolfgang Willner103, ORCID iconSusan Wiser5, Thomas Wohlgemuth104, Sergey Yamalov105, ORCID iconHelge Bruelheide1,2

— To whom correspondence should be addressed: francesco.sabatini@botanik.uni-halle.de
— These authors contributed equally to this work

  1. German Centre for Integrative Biodiversity Research (iDiv) - Halle-Jena-Leipzig. Germany
  2. Martin-Luther University Halle-Wittenberg, Institute of Biology, Am Kirchtor 1, 06108, Halle, Germany
  3. Unité de Recherche “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN), UMR 7058 CNRS, Université de Picardie Jules Verne, 80037 Amiens Cedex 1, France
  4. MARBEC, University of Montpellier, CNRS, IFREMER and IRD, Sète, France
  5. Manaaki Whenua – Landcare Research, PO Box 69040, 7640, Lincoln, New Zealand
  6. Masaryk University, Faculty of Science, Department of Botany and Zoology, Kotlářská 2, 611 37, Brno, Czech Republic
  7. Zurich University of Applied Sciences (ZHAW), Vegetation Ecology Group, Institute of Natural Resource Sciences (IUNR), Grüentalstr. 14, 8820, Wädenswil, Switzerland
  8. University of Bayreuth, Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), Universitätsstr. 30, 95447, Bayreuth, Germany
  9. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
  10. Federal University of Rio Grande do Sul, Ecology, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, Brazil
  11. IBMP, 12, rue du Général-Zimmer, 67084, Strasburg, France
  12. Wageningen University and Research, Wageningen Environmental Research (Alterra), P.O.Box 47, 6700 AA, Wageningen, Netherlands
  13. University of Rostock, Faculty of Agricultural and Environmental Sciences, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
  14. University of Oviedo, Research Unit of Biodiversity (CSIC/UO/PA), C. Gonzalo Gutiérrez Quirós s/n, 33600, Mieres, Spain
  15. Max Planck Institute for Biogeochemistry, Hans Knöll Str. 10, 07745, Jena, Germany
  16. University of Leeds, School of Geography, Woodhouse Lane, LS2 9JT, Leeds, United Kingdom
  17. NA,
  18. Aarhus University, Aarhus, Denmark
  19. Shahjalal University of Science & Technology, Forestry & Environmental Science, 3114, Sylhet, Bangladesh
  20. Faculty of Agriculture, Department of Agrobotany, Nemanjina 6, 11080, Belgrade-Zemun, Serbia
  21. Sapienza University of Rome, Department of Environmental Biology, P.le Aldo Moro 5, 00185, Rome, Italy
  22. University of Bonn, Plant Nutrition, INRES, Karlrobert-Kreiten-Str., 53115, Bonn, Germany
  23. Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Department of Plant and Fungal Diversity and Resources, Acad. Georgi Bonchev 23, 1113, Sofia, Bulgaria
  24. Shahjalal University of Science & Technology, Forestry & Environmental Science, Akhalia, 3114, Sylhet, Bangladesh
  25. Canadian Forest Service, Natural Resources Canada, Great Lakes Forestry Centre, 1219 Queen St. East, P6A 2E5, Sault Ste Marie (Ontario), Canada
  26. Ghent University, Department Green chemistry and technology, Isotope Bioscience laboratory (UGent-ISOFYS), Coupure Links 653, 9000, Ghent, Belgium
  27. Ghent University, Department Environment, Computational and Applied Vegetation Ecology (UGent-CAVELab), Coupure Links 653, 9000, Ghent, Belgium
  28. Université du Québec en Abitibi-Témiscamingue, Forest Research Institute, 445 boul. de l’Université, J9X5E4, Rouyn-Noranda, Canada
  29. University of Göttingen, Vegetation Ecology and Phytodiversity, Untere Karspüle 2, 37073, Göttingen, Germany
  30. University of the Basque Country UPV/EHU, Plant Biology and Ecology, P.O. Box 644, 48080, Bilbao, Spain
  31. Aarhus University, Section for Ecoinformatics & Biodiversity, Department of Bioscience, Ny Munkegade 114, 8000, Aarhus C, Denmark
  32. ISPRA - Italian National Institute for Environmental Protection and Research, Biodiversity Conservation Department, Via Vitaliano Brancati, 60, 00144, Roma, Italy
  33. Universidad Rey Juan Carlos, Department of Biology, Geology, Physics and Inorganic Chemistry, c/ Tulipán s/n, 28933, Móstoles, Spain
  34. Czech University of Life Sciences Prague, Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Kamýcká 1176, 165 21, Praha 6 - Suchdol, Czech Republic
  35. V.B. Sochava Insitute of Geography SB RAS, Laboratory of Physical Geography and Biogeography, Ulan-Batorskaya, 1, 664033, Irkutsk, Russian Federation
  36. University of Pécs, Department of Ecology, Ifjúság u. 6., 7624, Pécs, Hungary
  37. Faculty of Natural Sciences and Mathematics, Institute of Biology, Arhimedova 3, 1000, Skopje, Republic of Macedonia
  38. Research Institute for Nature and Forest (INBO), Departement of Biodiversity and Natural Environment, Havenlaan 88, bus 73, 1000, Brussels, Belgium
  39. University of Patras, Institute of Botany, Division of Plant Biology, Department of Biology, University Campus, 26504, Patras, Greece
  40. College of Science, King Saud University, Botany and Microbiology Department, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
  41. Damanhour University, Botany Department, Faculty of Science, Damanhour, Egypt
  42. University of Arizona, Ecology and Evolutionary Biology, 1041 E. Lowell St., AZ 85721, Tucson, United States
  43. University of Hamburg, Biodiversity, Ecology and Evolution of Plants, Institute for Plant Science & Microbiology, Ohnhorststr. 18, 22609, Hamburg, Germany
  44. Climpact Data Science (CDS), Nova Sophia - Regus Nova, 291 rue Albert Caquot, CS 40095, 06902, Sophia Antipolis Cedex, France
  45. Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), ECOLOGÍA VEGETAL Y FITOGEOGRAFÍA, Av. Vélez Sársfield 1611, 5000, Córdoba, Argentina
  46. Institute of Ecology of the Volga River Basin, Laboratory of Phytocoenology, Komzina, 10, 445003, Toljatty, Russia
  47. Universidad de Chile, Departamento de Ciencias Ambientales y Recursos Naturales Renovables, Facultad de Ciencias Agronomicas, Santa Rosa 11315, La Pintana, 8820808, Santiago, Chile
  48. Tanta University, Botany, Faculty of Science, El Geish St., 31527, Tanta, Egypt
  49. ASES Ecological and Sustainable Services, Pépinière d’Entreprises l’Espélidou, Parc d’Activités du Vinobre, 555 Chemin des Traverses, Lachapelle-sous-Aubenas, 07200, Aubenas, France
  50. University of Muenster, Institute of Landscape Ecology, Heisenbergstr. 2, 48149, Münster, Germany
  51. University of Göttingen, Plant Ecology and Ecosystems Research, Untere Karspüle 2, 37073, Göttingen, Germany
  52. Ghent University, Department Environment, Laboratory of Wood Biology (UGent-WoodLab), Coupure Links 653, 9000, Ghent, Belgium
  53. Royal Museum for Central Africa, Service of Wood Biology, Leuvensesteenweg 13, 3080, Tervuren, Belgium
  54. Transilvania University of Brasov, Department of Silviculture, Sirul Beethoven 1, 500123, Brasov, Romania
  55. University of Münster, Institute of Landscape Ecology, Heisenbergstr. 2, 48149, Münster, Germany
  56. University of Wrocław, Botanical Garden, Sienkiewicza 23, 50-335, Wrocław, Poland
  57. Soutwest Anatolia Forest Research Institute, Silviculture and Forest Botany, POB 264, 07002, Antalya, Turkey
  58. Ghent University, Department Environment, Computational and Applied Vegetation Ecology (UGent-CAVELab), Coupure Links 653, 9000, Gent, Belgium
  59. University of Zurich, Department of Systematic and Evolutionary Botany, Zollikerstrasse 107, 8008, Zurich, Switzerland
  60. Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences, Geosystem Laboratory, Zolotodolinskaya str. 101, 630090, Novosibirsk, Russian Federation
  61. Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Primatology, Deutscher Platz 6, 04103, Leipzig, Germany
  62. Masaryk University, Department of Botany and Zoology, Kotlářská 2, 611 37, Brno, Czech Republic
  63. Peking University, College of Urban and Environmental Sciences, Yiheyuan Rd. 5, 100871, Beijing, China
  64. Institute of Ecology of the Volga River Basin RAS, Dept. of the Phytodiversity Problems, Komzin str. 10, 445003, Togliatti, Russia
  65. Aarhus University, Department of Bioscience, Grenaavej 14, 8410, Roende, Denmark
  66. Royal Botanic Gardens, Kew, Conservation Science, Wakehurst Place, RH17 6TN, Ardingly, West Sussex, United Kingdom
  67. IRD, CIRAD, CNRS, INRA, Université Montpellier, AMAP - Botany and Modelling of Plant Architecture and Vegetation, Boulevard de la Lironde, 34398, Montpellier, France
  68. University of Vienna, Department of Botany and Biodiversity Research, Rennweg 14, 1030, Vienna, Austria
  69. Polish Academy of Sciences, Botanical Garden - Center for Biological Diversity Conservation, Prawdziwka 2, 02-976, Warszawa, Poland
  70. National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, Tereshchenkivska 2, 01601, Kyiv, Ukraine
  71. Universidade Federal do Rio Grande do Sul, Department of Botany, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre, Brazil
  72. University of Concepción, Laboratorio de Invasiones Biológicas (LIB), Victoria 631, 4030000, Concepción, Chile
  73. University of North Carolina, Department of Biology, CB3280, South Road, 27599-3280, Chapel Hill, NC, United States
  74. University of Barcelona, Department of Evolutionary Biology, Ecology and Environmental Sciences, Diagonal 643, 08028, Barcelona, Spain
  75. Center for Advanced Studies of Blanes, Spanish Research Council (CEAB-CSIC), Continental Ecology, Carrer d’accés a la Cala St. Francesc, 14, 17300, Blanes, Girona, Spain
  76. University of the Andes, Department of Civil and Environmental Engineering, Carrera 1 Este No. 19A-40, Edificio Mario Laserna, Piso 6 , 111711, Bogota, Colombia
  77. Kazan Federal University, Institute of Environmental Sciences, Kremlevskaya 18, 420008, Kazan, Russia
  78. Nature Research Centre, Institute of Botany, Zaliuju Ezeru 49, 08406, Vilnius, Lithuania
  79. NA, 7 Derwent Road, LA1 3ES, Lancaster, United Kingdom
  80. Babeș-Bolyai University, Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Republicii street 42., 400015, Cluj-Napoca, Romania
  81. University of Latvia, Department of Geography, 1 Jelgavas Street, 1004, Riga, Latvia
  82. University of Bayreuth, Climatology, Bayreuth Center of Ecology and Environmental Research (BayCEER), Universitätsstr. 30, 95447, Bayreuth, Germany
  83. Stadt Frankfurt am Main - Der Magistrat, Palmengarten, Siesmayerstraße 61, 60323, Frankfurt am Main, Germany
  84. Research Centre of Slovenian Academy of Sciences and Arts (ZRC SAZU), Institute of Biology, Novi trg 2, 1000, Ljubljana, Slovenia
  85. University of Zagreb, Faculty of Forestry, Svetošimunska 25, 10000, Zagreb, Croatia
  86. University of Adelaide, TERN, North Terrace, 5005, Adelaide, Australia
  87. University of Zagreb, Faculty of Geotechnical Engineering, Hallerova aleja 7, 42000, Varaždin, Croatia
  88. Aristotle University of Thessaloniki, School of Biology, 54124, Thessaloniki, Greece
  89. Plant Science and Biodiversity Centre Slovak Academy of Sciences, Institute of Botany, Dubravska cesta 9, 84523, Bratislava, Slovakia
  90. University of Erlangen-Nuremberg, Department of Geography, Wetterkreuz 15, 91058, Erlangen, Germany
  91. Universidade Federal do Rio Grande do Sul, Department of Ecology, Av Bento Gonçalves 9500, 91501-970, Porto Alegre, Brazil
  92. University of Perugia, Department of Chemistry, Biology and Biotechnology, Borgo XX giugno 74, 06124, Perugia, Italy
  93. Universidade Regional de Blumenau, Departamento de Engenharia Florestal, Rua São Paulo, 3250, 89030-000, Blumenau, Brazil
  94. University of Oulu, Ecology and Genetics Research Unit, Biodiversity Unit, Kaitoväylä 5, 90014, Oulu, Finland
  95. Helmholtz Center for Environmental Research - UFZ, Department of Physiological Diversity, Permoserstr. 15, 04318, Leipzig, Germany
  96. Leuphana University of Lüneburg, Institute of Ecology, Universitätsallee 1, 21335, Lüneburg, Germany
  97. University of Alberta, Department of Biological Sciences, Biological Sciences Building, T6G2E9, Edmonton, Canada
  98. University of Alaska, Institute of Arctic Biology, P. O. Box 7570000, 99775, Fairbanks, United States
  99. Addis Ababa University, Department of Geography & Environmental Studies, Sidist Kilo SQ, 150178, Addis Ababa, Ethiopia
  100. Senckenberg Museum of Natural History Görlitz, Botany Department, PO Box 300 154, 02806, Görlitz, Germany
  101. Technische Universität Dresden, International Institute Zittau, Markt 23, 02763, Zittau, Germany
  102. Brown University, Department of Ecology and Evolutionary Biology/Brown University Herbarium, 34 Olive Street, 02912, Providence, United States
  103. Vienna Institute for Nature Conservation & Analyses, Giessergasse 6/7, 1090, Vienna, Austria
  104. Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Research Unit Forest Dynamics, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
  105. Ufa Scientific Centre, Russian Academy of Sciences, Laboratory of Wild-Growing Flora, Botanical Garden-Institute, Mendeleev str., 195/3, 450080, Ufa, Russia

Abstract

Vegetation provides the foundation of life on Earth. Assessing biodiversity status and trends in plant communities is therefore critical to understand and quantify the effects of global change on ecosystems. Here, we present the largest dataset of vegetation plots (i.e. species co-occurrence or community composition data) ever released in open access. It contains information on 91,031 vegetation plots recording the cover or abundance of each plant species that occurs in a plot of a given surface area at the date of the botanical survey. Plots were derived from 103 local to regional datasets. To improve the representation of Earth’s environmental conditions, plots were resampled from a larger pool of vegetation plots using an environmentally stratified sampling design. Each vegetation plot comes with information on community-weighted means and variances of key plant functional traits. Our open-access dataset can be used to explore global patterns of diversity at the plant community level, as ground truthing data in remote sensing applications or as a baseline for biodiversity monitoring.

Background & Summary

Biodiversity is facing a global crisis (1). As many as 1 million species are estimated to be already facing extinction, mostly as a consequence of anthropogenic impacts, land-use and climate change (1). The rates of biodiversity redistribution and homogenization are also accelerating (2; 3). Biological assemblages are becoming progressively more similar to each other globally, as local biodiversity and endemic species go extinct and are replaced by introduced exotic species or by more widespread and competitive native species (1; 3). This has profound potential impacts on human and ecosystem health (4; 5). For instance, many terrestrial and marine species are shifting their geographical distribution as a response to climate change (2), including animals hosting pathogens transmissible to humans (6; 7; 8).

Vegetation, i.e., the assemblage of plant species, is no exception to this biodiversity crisis (9; 10; 3). This is worrisome, since terrestrial vegetation accounts for 80% (450 Gt C) of the living biomass on Earth (11). Given the central role of vegetation in ecosystem productivity, stability and functioning (10), assessing biodiversity status and trends in plant communities is paramount, for other life compartments and human societies alike.

Monitoring plant biodiversity trends requires adequate data across a range of scales (12). Large independent collections of plant occurrence data do exist at the global or continental extent via the Botanical Information and Ecology Network (BIEN) (13), the Global Inventory of Floras and Traits (GIFT) (14) or the Global Biodiversity Information Facility (GBIF) (https://www.gbif.org/). However, all these occurrence-only databases either neglect how individual plant species co-occur and interact locally to form plant communities, or are collected at spatial resolutions (e.g., one‐degree grid cells) which are too coarse to assess biodiversity trends at the most relevant scale of local plant communities (15).

Yet, there is a long-lasting tradition among botanists to record the cover or abundance of each plant species that occurs in a vegetation plot of a given size (i.e. surface area) at a given time (e.g. 16). Compared to species-level data, vegetation-plot data present many advantages. First, they contain information on which plant species co‐occur together in the same locality at a given moment in time (17). This built-in feature of vegetation plots is a necessary prerequisite for testing hypotheses related to biotic interactions among plant species (i.e. plant-plant interactions). It can also provide crucial information on where and when a species is absent, therefore improving current species distribution models (18). Being spatially explicit, vegetation plots can be resurveyed through time to assess potential changes in plant species composition relative to a baseline (19; 20, 3). As they normally contain also information on the relative cover or abundance of each species, vegetation plots are more adequate to detect subtle biodiversity changes, compared to data based on the occurrence of individual species only (21).

Vegetation-plot data are very fragmented, though, as they typically stem from a myriad of research projects. As such, these data often suffer from the usual trade-off in biodiversity data: Collections have either fine-grain spatial resolutions but small spatial extents, or vice versa (22). Furthermore, with their disparate sampling protocols, standards and taxonomic resolutions, aggregating and harmonizing vegetation plot data proves extremely challenging (23). It is not surprising, therefore, that these data have only been rarely used in global‐scale biodiversity research until recently (24; 25).

The sPlot initiative tries to close this data gap. It leverages on several existing local to regional vegetation-plot datasets, to create a harmonized and comprehensive global geo-database of terrestrial plant species assemblages (26). Established in 2013, sPlot currently contains more than 1.9 million vegetation plots, and is fully integrated with the TRY database (27), from which it derives information on plant functional traits. The sPlot database is increasingly being used to study continental- to global-scale vegetation patterns, such as the relative contribution of regional vs. local factors on the global patterns of fern richness (28), the mechanisms underlying the spread and abundance of native vs. invasive tree species (29), and worldwide trait–environment relationships in plant communities (23).

Here, we provide an open-access data set composed of 91,031 plots, which is representative of the environmental space covered by the sPlot database. Plots stem from 103 databases, and span across 115 countries (Figure 1). This resampled dataset (sPlot Open - hereafter) is composed of: (1) plot-level information, including metadata and basic vegetation structure descriptors; (2) the species composition of each vegetation plot, including species cover or abundance information when available; and (3) community-level functional diversity indices derived from the TRY database (27).

Figure 1: Global map of sPlot Open (n = 91,031) and spatial distribution of vegetation plot density per hexagonal cell with a spatial resolution of approximately 70.000 km². Map projection is Eckert IV.

Methods

Vegetation plot data sources

We started from the sPlot database v2.1 (created October 2016), which contains 1,121,244 vegetation plots and 23,586,216 species records stemming from 110 different vegetation‐plot datasets of regional, national or continental extent. Some of the 110 datasets stem from regional or continental initiatives (see 26 for more information). For instance: 48 vegetation-plot datasets derive from the European Vegetation Archive (EVA) (17), three major African datasets from the Tropical African Vegetation Archive (TAVA), multiple vegetation datasets in the USA from the VegBank archive (30; 31). Data from other continents (South America, Asia) or countries were contributed as separate datasets. The metadata of each individual vegetation-plot dataset stored in sPlot are managed through the Global Index of Vegetation‐Plot Databases (GIVD; 32), using the GIVD identifier as the unique dataset identifier.

Resampling method

Data in the sPlot database are unevenly distributed across continents and biomes (see 23). Mid-latitude regions in developing countries (mostly Europe, the USA and Australia) are overrepresented, while regions in the tropics and subtropics are underrepresented, which is a typical geographical bias in biodiversity data (e.g., 33; 2). To reduce this imbalance to the extent possible, we performed a stratified resampling approach, using several environmental variables available at the global extent as sampling strata. We considered 30 climatic and soil variables. For climate we complemented the 19 bioclimatic variables from CHELSA (34), as well as two variables reflecting growing-season warmth (growing degree days above 1 °C - GDD1 - and 5 °C - GDD5), which we calculated based on CHELSA bioclimatic variables. In addition we considered an index of aridity (AR) and a model for Potential Evapotranspiration (PET - 35). For soil, we extracted seven variables from the SOILGRIDS database (36), namely: soil organic carbon content in the fine earth fraction, cation exchange capacity, pH, as well as the fractions of coarse fragments, sand, silt and clay.

We stratified our sampling effort based on the following procedure. First we ran a global principal component analysis (PCA) of the 30 above-mentioned environmental variables. We considered the full environmental space of all terrestrial habitats on Earth at a spatial resolution of 2.5 arcmin, totaling 8,384,404 terrestrial grid cells, irrespective of whether a grid cell hosted vegetation plots from the sPlot database v2.1 or not. We then subdivided the environmental space represented by the first two principal components (PC1–PC2), accounting for 47% and 23% of the total variation on PC1 and PC2, respectively, into a 100 × 100 grid. This PC1-PC2 bidimensional space was subsequently used to balance our sampling effort across all PC1-PC2 grid cells for which vegetation plots are available. Before projecting vegetation plots from the sPlot database v2.1 onto this PC1-PC2 environmental space, we removed vegetation plots: from wetlands; from anthropogenic vegetation types; without geographical coordinates; and with a location uncertainty higher than 3 km for those having geographical coordinates. This led to a total of 799,400 out of the initial set of 1,121,244 vegetation plots. When projecting the 799,400 vegetation plots in the PC1-PC2 grid, we calculated how many vegetation plots occurred in each PC1-PC2 grid cell. For those grid cells with more than 50 vegetation plots (n = 858), we randomly selected up to 50 vegetation plots using the heterogeneity-constrained random resampling algorithm from [37]. This approach optimizes the selection of a random subset of vegetation plots that encompasses the highest variability in species composition while avoiding peculiar and rare communities, which may represent outliers. We based the quantification of variability in plant species composition among the 50 randomly selected vegetation plots by computing the mean and the variance of the Jaccard’s dissimilarity index (38) between all possible pairs of vegetation plots for a given random selection of 50 vegetation plots (n = 1225). More precisely, for a given PC1-PC2 grid cell containing more than 50 vegetation plots, we generated 1,000 random selections of 50 vegetation plots and ranked the 1,000 random selections according to the mean (ascending order) and variance (descending order) value. Ranks from both sortings were summed for each random selection, and the random selection with the lowest summed rank was considered as the most representative of the focal grid cell. In case a grid cell contained fewer than 50 plots, we retained all of them. In this way, we reduced the imbalance towards over-sampled climate types, while ensuring the resampled dataset to be representative of the entire environmental gradient covered by the sPlot database. We repeated the resampling procedure three times to get three different possibilities of a random selection of 50 vegetation plots per PC1-PC2 grid cell with, initially, more than 50 vegetation plots. Vegetation plots selected during the first iteration were our first choice, while we considered the vegetation plots additionally selected in the second and third iteration as reserves when asking for the permission to release the data as open access to each dataset’s contributor(s).

Permission to release the data as open access

The resampling procedure resulted in a preliminary potential selection of 98,383 vegetation plots (first choice) and 51,634 vegetation plots flagged as reserves (second or third choice for the subset of PC1-PC2 grid cells with more than 50 vegetation plots available). Being the sPlot database a consortium of independent datasets, whose copyright belongs to the data contributor, we used this preliminary potential selection to ask each dataset’s custodian (i.e., either the owner of a dataset or its authorized representative in case of a collective dataset) for permission to release the data of each selected vegetation plot as open access. For 8,070 vegetation plots, permission could not be granted, for instance because the data are unpublished, confidential or sensitive. For these vegetation plots, we used the reserve pool to randomly select replacements, for which such permission could be granted. We imposed the constraint that each vegetation plot in the reserve should belong to the same environmental stratum, i.e., the same PC1-PC2 grid cell, of the confidential vegetation plot. Note that 2,380 PC1-PC2 grid cells (11.7% of total) had one more confidential vegetation plots (median = 1, mean = 3.4, max = 171) that could not be replaced from the reserve pool.

Trait information

For each vegetation plot for which open access has been granted, we computed the community weighted means for eighteen plant functional traits derived from the TRY database v3.0 (27). These traits were selected among those traits that describe the leaf, wood and seed economics spectra (39; 40), and are known to either affect different key ecosystem processes or respond to macroclimatic drivers or both (26). The eighteen plant functional traits were: (1) leaf area [mm2]; (2) stem specific density [g cm-3]; (3) specific leaf area [m2kg-1]; (4) leaf carbon concentration [mg g-1]; (5) leaf nitrogen concentration [mg g-1]; (6) leaf phosphorus concentration [mg g-1]; (7) plant height [m]; (8) seed mass [mg]; (9) seed length [mm]; (10) leaf dry matter content [g g-1]; (11) leaf nitrogen per area [g m-2]; (12) leaf N:P ratio [g g-1]; (13) leaf 𝛿15N [per million]; (14) seed number per reproductive unit; (15) leaf fresh mass [g]; (16) stem conduit density [mm-2]; (17) dispersal unit length [mm]; and (18) conduit element length [μm].

Because missing values were particularly widespread in the species-trait matrix, we employed a gap-filling procedure based on hierarchical Bayesian modeling (R package ‘BHPMF’, 41; 42). Gap-filling was performed at the level of individual observations. We then log‐transformed all gap‐filled trait values and averaged each trait by taxon (i.e., at species, or genus level). Additional information on the gap-filling procedure are available in [26].

Community‐weighted means (CWM) and the variances (CWV) were calculated for every plant functional trait j and every vegetation plot k as follows (43):

\[ CWM_{j,k} = \sum_{i}^{n_k} p_{i,k} t_{i,j}\](1)
\[ CWV_{j,k} = \sum_{i}^{n_k} p_{i,k} (t_{i,j} - CWM_{j,k})^2\](2)

where nk is the number of species with trait information in vegetation plot k, pi,k is the relative abundance of species i in vegetation plot k calculated as the species’ fraction in cover or abundance of total cover or abundance, and ti,j is the mean value of species i for trait j.

Data Records

The final dataset that is provided here as open access contains 91,031 vegetation plots from 115 countries and all continents except Antarctica (Figure 1) and stems from 103 constitutive datasets (Table 1). It only contains the species composition of vascular plants, while information on the composition of bryophytes and lichens was discarded since it was only available for a minority of plots (n = 4,963 and n = 3,045, respectively). Information on the size (surface area) of the vegetation survey is available for 61,898 vegetation plots, and ranges between 0.01 m2 and 4 ha (mean = 270 m2; median = 78.5 m2). The average number of vascular plant species per vegetation plot ranges between 1 (i.e. monospecific stands) and 270 species (mean = 17.6; median = 13).

By reducing the overrepresentation of vegetation plots in specific environmental conditions, the resampling procedure described above strongly reduced the bias in the distribution of vegetation plots within the environmental niche space. Yet, due to the lack or scarcity of data from some geographical regions, like the tropics, the spatial distribution of vegetation plots remains unbalanced across geographical regions (Figure 1). This is evident when comparing the number of plots across continents or biomes. Europe is by far the best represented continent, with 53,884 vegetation plots. In contrast, Africa and South America have only 4,507 and 5,515 vegetation plots, respectively. The representation of biomes is equally unbalanced. The biomes ‘Temperate midlatitudes’ and ‘Subtropics with winter rain’ have 37,507 and 16,510 vegetation plots, respectively, while none of the other biomes have more than 10,000 vegetation plots (Figure 2).

Figure 2: Distribution of vegetation plots in climate space represented by mean annual temperature and mean annual precipitation superimposed onto Whittaker biomes (44)

Finally, the dataset contains a relatively balanced number of forest (n = 25,832) vs. non forest (n = 38,203) vegetation plots, with a minor proportion of plots remaining unassigned (n = 10,050). The assignment of plots to forests and non-forests is based on multiple lines of evidence, including the plot-level information on the cover of the tree layer, as well as traits of species composing a plot, such as growth form and height. In short, a plot record was considered a forest if the cover of the tree layer, or alternatively, the sum of the relative cover of all tree taxa, was greater than 0.25. It was instead considered a non-forest record if the sum of relative cover of low‐stature, non‐tree and non‐shrub taxa was greater than 0.90. For an extensive explanation on this classification scheme, we refer the reader to [26]. Even if the proportion of forest vs. non-forest vegetation plots is relatively well-balanced, the geographical distribution of vegetation plots belonging to different vegetation types is likely not balanced in the geographical space, as it depends on the idiosyncrasies of the constitutive datasets composing the sPlot database. For instance, the data from New Zealand only include plots collected in non-forest ecosystems, while data from Chile only refer to forests. We invite potential users to carefully read the description of each individual dataset in GIVD, or to contact the custodians of each dataset, before using sPlot Open.

Database Organization

sPlot Open is organized into three main matrices.

The ‘header’ matrix contains plot level information for the 91,031 vegetation plots provided in this open access dataset, including metadata (e.g., plot ID, ownership, sampling date, geographical location, positional accuracy), sampling design information (e.g., the total surface area used during the vegetation survey), and a plot-level description of vegetation structure (e.g., vegetation type, percentage cover of each vegetation layer), and vegetation type. Plots in Europe are also classified according to the EUNIS habitat classification (column ‘ESY’), based on the habitat classification expert system described in [45]. For each vegetation plot we further provide information on the dataset it stems from, based on the IDs used in the Global Index of Vegetation-Plot Databases. A brief description of all the 43 variables contained in the header matrix is provided in Table 2.

The ‘DT’ matrix contains data on the species composition of each plot. It is structured in a long format and contains 1,608,610 records, from 39,997 vascular plant taxa, mostly resolved at the species level. For each record we report both the taxon name as originally contributed by the data custodian (column ‘Original_scpecies’), and the taxon name after taxonomic standardization (column ‘Species’). For each entry, we report the species cover//abundance values. These follow different standards across the datasets constituting the sPlot database. We therefore provide both the cover//abundance value as reported in the original data (column ‘Original_abundance’), together with the abundance scale that was originally used (column ‘Abundance_scale’). This can take seven values: ‘CoverPerc’ = percentage cover, ‘pa’ = presence-absence, ‘x_BA’ = basal area (m2/ha, only for woody species), ‘x_IC’ = individual count, i.e., number of individuals in plot, ‘x_SC’ = stem count, i.e., number of stems in plot, ‘x_IV’ = importance value index, ‘x_PF’ = presence frequency. The great majority of entries, however, use the percentage cover scale (n= 1,397,109). Finally, for each entry we calculated a ‘Relative_cover’, i.e., the cover//abundance of a given taxon divided by the total cover//abundance of all taxa in that vegetation plot.

The ‘CWM_CWV’ matrix contains the community-weighted means and variances calculated for each of the 18 functional traits mentioned above. It also contains three additional columns. The column ‘Species_richness’ returns the number of species recorded in each plot. The columns ‘Trait_coverage_cover’ and ‘Trait_coverage_pa’ return respectively the proportion of total cover and species in a plot for which functional trait information was available.

Functional trait information was available for 20,932 species. The average proportion of species in each plot for which we have functional trait information is 0.88 (median = 1). For 47,177 plots the coverage is complete, while only in one plot we have no functional trait information for any of the occurring species. When considering relative cover, the average trait coverage is 0.89. As many as 68,234 and 74,388 plots have functional trait information for more than 80% of the species or 80% of relative cover, respectively.

sPlot Open contains two additional objects. The ‘metadata’ matrix contains plot-level metadata, which provide information on the origin of each individual vegetation plot. This object contains 15 columns, with information on Plot ID, dataset of origin (column ‘GIVD_ID’ - 32), author or surveyor names (columns ‘Releve_author’ and ‘Releve_coauthor’), bibliographic references both at the dataset (column ‘DB_BIBTEXKEY’) and plot level (‘Plot_Biblioreference’ and ‘BIBTEXKEY’). Similarly, the column ‘Project_name’ provide information on the project in which a vegetation plot was collected. When available, we also provide information on the numbering of the plots in the publication where they originally appeared (columns ‘Nr_table_in_publ’, ‘Nr_releve_in_table’), or in the dataset where they were initially stored (‘Original_nr_in_database’). In case of nested plots (n=1,786), we also provide the original plot and subplot IDs (columns: ‘Original_plotID’, ‘Original_subplotID’). The last two columns report plot-level ‘Remarks’, and the unique identifier produced by Turboveg when the vegetation plot was first stored (‘GUID’).

Finally, the object ‘references’, contains all the bibliographic references formatted according to a BibTex standard. Each reference is tagged with a key corresponding to the fields ‘DB_BIBTEXKEY’ and ‘BIBTEXKEY’ in the metadata. We further provide an R function (‘sPlotOpen_citation’) to create reference lists, based on a selection of plots and\or datasets.

With the exception of the ‘reference’ file (format .bib), all objects are provided in tab-delimited .txt files. All objects, including the ‘sPlotOpen_citation’ function are also compiled inside an .RData object.

Technical Validation

The sPlot database has a nested structure, and is composed of several individual datasets, each validated and maintained by its respective dataset custodian. In same cases, individual datasets are also collections, whose vegetation plots were provided by their respective owners (the person who performed the actual vegetation survey) or by someone who digitized the original data from the scientific or grey literature. We obviously have no direct control on the individual vegetation plots that we provide here in an open access dataset. Yet, each of these vegetation plots stem from trained professional botanists, or published scientific work, and are accompanied by detailed information on the sampling protocols used, thus ensuring data quality and reliability.

Before having been integrated into the sPlot database, each dataset was further checked for consistency and, if having a different format, was converted to a Turboveg 2 database (46). During this conversion, we checked that all datasets contained the required metadata information, and cross-checked that each plot was located within the geographic scopes of its respective dataset. Finally, we harmonized all the taxonomic names from all datasets, based on the sPlot’s taxonomic backbone (Purschke 2017). This backbone matched all the taxonomic names (without nomenclatural authors) from all datasets in sPlot 2.1 and TRY v3.0 (27) to their resolved version based on the Taxonomic Name Resolution Service web application (TNRS version 4.0; 47; iPlant Collaborative, 2015). This allowed to (1) harmonize all datasets to a common nomenclature, and (2) link the sPlot database to the TRY database (27). All taxa originally denoted at taxonomic ranks lower than species, were aggregated at species level. Additional detail on the taxonomic resolution is reported in [26], while a description of the workflow, including R‐code, is available in [48]

Usage Notes

The sPlot Open database can be downloaded from https://www.idiv.de (link to PlantHub). Users are invited to cite the original sources when using sPlot Open. For some datasets (e.g., AF-00-009, AF-CD-001) the identification of taxa at species level is still in progress. As a rule, we recommend sPlot Open users to get in touch with the custodian(s) of the data they are planning to use (custodian names are reported in https://www.idiv.de/sPlot). The use of data contained in BioTIME should cite original data citations in addition to the present paper. The data included in the present paper represent the subset of sPlot for which we were able to secure permission for making these data open. The additional data in sPlot are available under sPlot’s Governance and Data Property Rules (www.idiv.de/sPlot).

Code Availability

The R code used to produce sPlot Open from the sPlot 2.1 database is contained in the sPlotOpen_code GitHub repository: (https://github.com/fmsabatini/sPlotOpen_Code/). This manuscript was produced using the Manubot workflow (49). The code for reproducing this manuscript is stored in the sPlotOpen_manuscript GitHub repository: (https://github.com/fmsabatini/sPlotOpen_Manuscript).

Acknowledgements

We are grateful to thousands of vegetation scientists who sampled vegetation plots in the field or digitized them into regional, national or international databases. We also appreciate the support of the German Research Foundation for funding sPlot as one of the iDiv (DFG FZT 118, 202548816) research platforms, and the organization of three workshops through the sDiv calls. We acknowledge this support with naming the database “sPlot”, where the “s” refers to the sDiv synthesis workshops.

The study has been supported by the TRY initiative on plant traits (http://www.try-db.org). The TRY initiative and database is hosted, developed and maintained by J. Kattge and G. Bönisch (Max Planck Institute for Biogeochemistry, Jena, Germany). TRY is currently supported by DIVERSITAS/Future Earth and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. Jens Kattge acknowledges support by the Max Planck Institute for Biogeochemistry (Jena, Germany), Future Earth, the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig and the EU H2020 project BACI, Grant No 640176.

Isabelle Aubin was funded through Natural Sciences and Engineering Research Council of Canada and Ontario Ministry of Natural Resources and Forestry. Yves Bergeron was funded through Natural Sciences and Engineering Research Council of Canada. Idoia Biurrun was funded by the Basque Government (IT936-16). Anne Bjorkman thank the Herschel Island-Qikiqtaruk Territorial Park management, Catherine Kennedy, Dorothy Cooley, Jill F. Johnstone, Cameron Eckert and Richard Gordon for establishing the ecological monitoring programme. Funding was provided by Herschel Island-Qikiqtaruk Territorial Park. Luis Cayuela was supported by project BIOCON08_044 funded by Fundación BBVA. Milan Chytrý, Flavia Landucci, Corrado Marcenò and Tomáš Peterka were supported by the Czech Science Foundation (project no. 19-28491X). Brian Enquist thanks the following individuals and institutions for contributing data to sPlot via the SALVIAS database: Mauricio Bonifacino, Saara DeWalt, Timothy Killeen, Susan Letcher, Nigel Pitman, Cam Webb, The Missouri Botanical Garden, RAINFOR and the Amazon Forest Inventory Network. Alvaro G. Gutiérrez acknowledges FONDECYT 11150835, Project FORECOFUN-SSA PIEF-GA-2010–274798), CONICYT-PAI (82130046). Mohamed Z. Hatim thanks Kamal Shaltout for supervision, and Joop Schaminée for support and funding from the Prince Bernard Culture Fund Prize for Nature Conservation. Jürgen Homeier received funding from BMBF (Federal Ministry of Education and Science of Germany) and the German Research Foundation (DFG Ho3296-2, DFG Ho3296-4). Tatiana Lysenko was funded by Russian Foundation for Basic Research (grant No. 16-04-00747a). Jérôme Munzinger was supported by the French National Research Agency (ANR) with grants INC (ANR-07-BDIV-0008), BIONEOCAL (ANR-07-BDIV-0006) & ULTRABIO (ANR-07-BDIV-0010), by National Geographic Society (Grant 7579-04), and with fundings and authorizations of North and South Provinces of New Caledonia. Gerhard E. Overbeck acknowledges support from Brazil’s National Council of Scientific and Technological Development (CNPq, grant 310022/2015-0). Josep Peñuelas would like to acknowledge the financial support from the European Research Council Synergy grant ERC-SyG-2013-610028 IMBALANCE-P Oliver Phillips was funded by an ERC Advanced Grant (291585, “T-FORCES”) and a Royal Society-Wolfson Research Merit Award. Valério D. Pillar has been supported by the Brazil’s National Council of Scientific and Technological Development (CNPq, grant 307689/2014-0). Solvita Rūsiņa was supported by the University of Latvia grant AAP2016/B041//Zd2016/AZ03 within the “Climate change and sustainable use of natural resources”. Franziska Schrodt was supported by a University of Minnesota Institute on the Environment Discovery Grant, a German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig grant (50170649_#7) and a University of Nottingham Anne McLaren Fellowship. Kim André Vanselow would like to thank W. Bernhard Dickoré for the help in the identification of plant species and acknowledge the financial support from the Volkswagen Foundation (AZ I/81 976) and the German Research Foundation (DFG VA 749/1-1, DFG VA 749/4-1). Evan Weiher was funded by NSF DEB-0415383, UWEC-ORSP, and UWEC-BCDT.

This paper is dedicated to the memory of Dr. Ching-Feng (Woody) Li.

Author contributions

FMS wrote the first draft of the manuscript, with considerable input from JL and HB. JL and TH wrote the resampling algorithm. FMS set up the GiHub projects, curated the database, and produced the graphs. He also coordinated the sPlot consortium. SMH wrote the Turboveg v3 software, which holds the sPlot database. JK provided the trait data from TRY and FS performed the trait data gap filling. HB secured the funding for sPlot as a strategic project of iDiv. All other authors contributed data. All authors contributed to revising the manuscript.

Competing interests

The authors declare no competing interests.

References

1. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
IPBES
IPBES secretariat (2019)
ISBN: 978-3-947851-13-3

2. Species better track climate warming in the oceans than on land
Jonathan Lenoir, Romain Bertrand, Lise Comte, Luana Bourgeaud, Tarek Hattab, Jérôme Murienne, Gaël Grenouillet
Nature Ecology & Evolution (2020-05-25) https://doi.org/ggx3np
DOI: 10.1038/s41559-020-1198-2

3. Replacements of small- by large-ranged species scale up to diversity loss in Europe’s temperate forest biome
Ingmar R. Staude, Donald M. Waller, Markus Bernhardt-Römermann, Anne D. Bjorkman, Jörg Brunet, Pieter De Frenne, Radim Hédl, Ute Jandt, Jonathan Lenoir, František Máliš, … Lander Baeten
Nature Ecology & Evolution (2020-04-13) https://doi.org/ggrs73
DOI: 10.1038/s41559-020-1176-8 · PMID: 32284580

4. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being
Gretta T. Pecl, Miguel B. Araújo, Johann D. Bell, Julia Blanchard, Timothy C. Bonebrake, I-Ching Chen, Timothy D. Clark, Robert K. Colwell, Finn Danielsen, Birgitta Evengård, … Stephen E. Williams
Science (2017-03-31) https://doi.org/f9xmpm
DOI: 10.1126/science.aai9214 · PMID: 28360268

5. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science
Timothy C. Bonebrake, Christopher J. Brown, Johann D. Bell, Julia L. Blanchard, Alienor Chauvenet, Curtis Champion, I-Ching Chen, Timothy D. Clark, Robert K. Colwell, Finn Danielsen, … Gretta T. Pecl
Biological Reviews (2018-02) https://doi.org/gc2dvc
DOI: 10.1111/brv.12344 · PMID: 28568902

6. Global trends in emerging infectious diseases
Kate E. Jones, Nikkita G. Patel, Marc A. Levy, Adam Storeygard, Deborah Balk, John L. Gittleman, Peter Daszak
Nature (2008-02) https://doi.org/cbxh9h
DOI: 10.1038/nature06536 · PMID: 18288193 · PMCID: PMC5960580

7. The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer
Thomas G. T. Jaenson, Elisabet Lindgren
Ticks and Tick-borne Diseases (2011-03) https://doi.org/fmn4dp
DOI: 10.1016/j.ttbdis.2010.10.006 · PMID: 21771536

8. Altitudinal Changes in Malaria Incidence in Highlands of Ethiopia and Colombia
A. S. Siraj, M. Santos-Vega, M. J. Bouma, D. Yadeta, D. R. Carrascal, M. Pascual
Science (2014-03-06) https://doi.org/f5vb47
DOI: 10.1126/science.1244325 · PMID: 24604201

9. A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century
J. Lenoir, J. C. Gegout, P. A. Marquet, P. de Ruffray, H. Brisse
Science (2008-06-27) https://doi.org/bnhhj8
DOI: 10.1126/science.1156831 · PMID: 18583610

10. The functional role of producer diversity in ecosystems
Bradley J. Cardinale, Kristin L. Matulich, David U. Hooper, Jarrett E. Byrnes, Emmett Duffy, Lars Gamfeldt, Patricia Balvanera, Mary I. O’Connor, Andrew Gonzalez
American Journal of Botany (2011-03) https://doi.org/fnh8qs
DOI: 10.3732/ajb.1000364 · PMID: 21613148

11. The biomass distribution on Earth
Yinon M. Bar-On, Rob Phillips, Ron Milo
Proceedings of the National Academy of Sciences (2018-06-19) https://doi.org/cp29
DOI: 10.1073/pnas.1711842115 · PMID: 29784790 · PMCID: PMC6016768

12. Effective Biodiversity Monitoring Needs a Culture of Integration
Hjalmar S. Kühl, Diana E. Bowler, Lukas Bösch, Helge Bruelheide, Jens Dauber, David. Eichenberg, Nico Eisenhauer, Néstor Fernández, Carlos A. Guerra, Klaus Henle, … Aletta Bonn
One Earth (2020-10) https://doi.org/ghgk4w
DOI: 10.1016/j.oneear.2020.09.010

13. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity
Brian J Enquist, Rick Condit, Robert K Peet, Mark Schildhauer, Barbara M. Thiers
PeerJ (2018-01-13) https://doi.org/ghfnsx
DOI: 10.7287/peerj.preprints.2615v2

14. GIFT – A Global Inventory of Floras and Traits for macroecology and biogeography
Patrick Weigelt, Christian König, Holger Kreft
Journal of Biogeography (2019-06-09) https://doi.org/gf38t6
DOI: 10.1111/jbi.13623

15. Distorted Views of Biodiversity: Spatial and Temporal Bias in Species Occurrence Data
Elizabeth H. Boakes, Philip J. K. McGowan, Richard A. Fuller, Ding Chang-qing, Natalie E. Clark, Kim O’Connor, Georgina M. Mace
PLoS Biology (2010-06-01) https://doi.org/brfdq6
DOI: 10.1371/journal.pbio.1000385 · PMID: 20532234 · PMCID: PMC2879389

16. Versuch einer Übersicht über die Wiesentypen der Schweiz
F. G. Stebler, C. Schröter
Landwirt. Jahrb. Schweiz (1893)

17. European Vegetation Archive (EVA): an integrated database of European vegetation plots
Milan Chytrý, Stephan M. Hennekens, Borja Jiménez-Alfaro, Ilona Knollová, Jürgen Dengler, Florian Jansen, Flavia Landucci, Joop H. J. Schaminée, Svetlana Aćić, Emiliano Agrillo, … Sergey Yamalov
Applied Vegetation Science (2016-01) https://doi.org/bc7k
DOI: 10.1111/avsc.12191

18. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data
Steven J. Phillips, Miroslav Dudík, Jane Elith, Catherine H. Graham, Anthony Lehmann, John Leathwick, Simon Ferrier
Ecological Applications (2009-01) https://doi.org/dx4s78
DOI: 10.1890/07-2153.1 · PMID: 19323182

19. Global environmental change effects on plant community composition trajectories depend upon management legacies
Michael P. Perring, Markus Bernhardt-Römermann, Lander Baeten, Gabriele Midolo, Haben Blondeel, Leen Depauw, Dries Landuyt, Sybryn L. Maes, Emiel De Lombaerde, Maria Mercedes Carón, … Kris Verheyen
Global Change Biology (2018-04) https://doi.org/gc6mjp
DOI: 10.1111/gcb.14030 · PMID: 29271579

20. Accelerated increase in plant species richness on mountain summits is linked to warming
Manuel J. Steinbauer, John-Arvid Grytnes, Gerald Jurasinski, Aino Kulonen, Jonathan Lenoir, Harald Pauli, Christian Rixen, Manuela Winkler, Manfred Bardy-Durchhalter, Elena Barni, … Sonja Wipf
Nature (2018-04-04) https://doi.org/gdfwk3
DOI: 10.1038/s41586-018-0005-6 · PMID: 29618821

21. Exploring large vegetation databases to detect temporal trends in species occurrences
Ute Jandt, Henrik von Wehrden, Helge Bruelheide
Journal of Vegetation Science (2011-12) https://doi.org/d8b4jv
DOI: 10.1111/j.1654-1103.2011.01318.x

22. Biodiversity data integration—the significance of data resolution and domain
Christian König, Patrick Weigelt, Julian Schrader, Amanda Taylor, Jens Kattge, Holger Kreft
PLOS Biology (2019-03-18) https://doi.org/c3xz
DOI: 10.1371/journal.pbio.3000183 · PMID: 30883539 · PMCID: PMC6445469

23. Global trait–environment relationships of plant communities
Helge Bruelheide, Jürgen Dengler, Oliver Purschke, Jonathan Lenoir, Borja Jiménez-Alfaro, Stephan M. Hennekens, Zoltán Botta-Dukát, Milan Chytrý, Richard Field, Florian Jansen, … Ute Jandt
Nature Ecology & Evolution (2018-11-19) https://doi.org/gfj595
DOI: 10.1038/s41559-018-0699-8 · PMID: 30455437

24. Big data for forecasting the impacts of global change on plant communities
Janet Franklin, Josep M. Serra-Diaz, Alexandra D. Syphard, Helen M. Regan
Global Ecology and Biogeography (2017-01) https://doi.org/f9hdp3
DOI: 10.1111/geb.12501

25. Achievements and challenges in the integration, reuse and synthesis of vegetation plot data
Susan K. Wiser
Journal of Vegetation Science (2016-09) https://doi.org/ghfnr5
DOI: 10.1111/jvs.12419

26. sPlot – A new tool for global vegetation analyses
Helge Bruelheide, Jürgen Dengler, Borja Jiménez‐Alfaro, Oliver Purschke, Stephan M. Hennekens, Milan Chytrý, Valério D. Pillar, Florian Jansen, Jens Kattge, Brody Sandel, … Andrei Zverev
Journal of Vegetation Science (2019-04-08) https://doi.org/gfvhkm
DOI: 10.1111/jvs.12710

27. TRY plant trait database – enhanced coverage and open access
Jens Kattge, Gerhard Bönisch, Sandra Díaz, Sandra Lavorel, Iain Colin Prentice, Paul Leadley, Susanne Tautenhahn, Gijsbert D. A. Werner, Tuomas Aakala, Mehdi Abedi, … Christian Wirth
Global Change Biology (2020) https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14904
DOI: 10.1111/gcb.14904

28. Global fern and lycophyte richness explained: How regional and local factors shape plot richness
Anna Weigand, Stefan Abrahamczyk, Isabelle Aubin, Claudia Bita‐Nicolae, Helge Bruelheide, Cesar I. Carvajal‐Hernández, Daniele Cicuzza, Lucas Erickson Nascimento da Costa, János Csiky, Jürgen Dengler, … Michael Kessler
Journal of Biogeography (2019-12-30) https://doi.org/ggf4gr
DOI: 10.1111/jbi.13782

29. Similar factors underlie tree abundance in forests in native and alien ranges
Masha T. Sande, Helge Bruelheide, Wayne Dawson, Jürgen Dengler, Franz Essl, Richard Field, Sylvia Haider, Mark Kleunen, Holger Kreft, Joern Pagel, … Tiffany M. Knight
Global Ecology and Biogeography (2019-12) https://doi.org/ggftj7
DOI: 10.1111/geb.13027 · PMID: 32063745 · PMCID: PMC7006795

30. Vegetation-plot database of the Carolina Vegetation Survey
Richard K. Peet, Michael T. Lee, M. Forbes Boyle, Thomas R. Wentworth, Michael P. Schafale, Alan S. Weakley
Vegetation databases for the 21st century (2012) https://doi.org/10.7809/b-e.00081

31. VegBank – a permanent, open‐access archive for vegetation‐plot data
Richard K. Peet, M. T. Lee, M. D. Jennings, D. Faber‐Langendoen
Vegetation databases for the 21st century (2012) https://doi.org/10.7809/b-e.00080

32. The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science
Jürgen Dengler, Florian Jansen, Falko Glöckler, Robert K. Peet, Miquel De Cáceres, Milan Chytrý, Jörg Ewald, Jens Oldeland, Gabriela Lopez-Gonzalez, Manfred Finckh, … Nick Spencer
Journal of Vegetation Science (2011-08) https://doi.org/ctx2s7
DOI: 10.1111/j.1654-1103.2011.01265.x

33. Climate-related range shifts - a global multidimensional synthesis and new research directions
J. Lenoir, J.-C. Svenning
Ecography (2015-01) https://doi.org/f6xz9h
DOI: 10.1111/ecog.00967

34. Climatologies at high resolution for the earth’s land surface areas
Dirk Nikolaus Karger, Olaf Conrad, Jürgen Böhner, Tobias Kawohl, Holger Kreft, Rodrigo Wilber Soria-Auza, Niklaus E. Zimmermann, H. Peter Linder, Michael Kessler
Scientific Data (2017-09-05) https://doi.org/gbvksk
DOI: 10.1038/sdata.2017.122 · PMID: 28872642 · PMCID: PMC5584396

35. Global High-Resolution Soil-Water Balance
Antonio Trabucco, Robert J. Zomer
figshare (2019) https://figshare.com/articles/Global_High-Resolution_Soil-Water_Balance/7707605/3
DOI: 10.6084/m9.figshare.7707605.v3

36. SoilGrids250m: Global gridded soil information based on machine learning
Tomislav Hengl, Jorge Mendes de Jesus, Gerard B. M. Heuvelink, Maria Ruiperez Gonzalez, Milan Kilibarda, Aleksandar Blagotić, Wei Shangguan, Marvin N. Wright, Xiaoyuan Geng, Bernhard Bauer-Marschallinger, … Bas Kempen
PLOS ONE (2017-02-16) https://doi.org/f9qc5p
DOI: 10.1371/journal.pone.0169748 · PMID: 28207752 · PMCID: PMC5313206

37. Heterogeneity-constrained random resampling of phytosociological databases
Attila Lengyel, Milan Chytrý, Lubomír Tichý
Journal of Vegetation Science (2011-02) https://doi.org/dvjzbz
DOI: 10.1111/j.1654-1103.2010.01225.x

38. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness
Andrés Baselga
Global Ecology and Biogeography (2012-12) https://doi.org/gddc72
DOI: 10.1111/j.1466-8238.2011.00756.x

39. A leaf-height-seed (LHS) plant ecology strategy scheme
Mark Westoby
Plant and Soil (1998-02-01) https://doi.org/10.1023/A:1004327224729
DOI: 10.1023/a:1004327224729

40. The world-wide “fast-slow” plant economics spectrum: a traits manifesto
Peter B. Reich
Journal of Ecology (2014-03) https://doi.org/gfc4z9
DOI: 10.1111/1365-2745.12211

41. Uncertainty Quantified Matrix Completion Using Bayesian Hierarchical Matrix Factorization
Farideh Fazayeli, Arindam Banerjee, Jens Kattge, Franziska Schrodt, Peter B. Reich
Institute of Electrical and Electronics Engineers (IEEE) (2014-12) https://doi.org/ghfnw3
DOI: 10.1109/icmla.2014.56

42. BHPMF - a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography
Franziska Schrodt, Jens Kattge, Hanhuai Shan, Farideh Fazayeli, Julia Joswig, Arindam Banerjee, Markus Reichstein, Gerhard Bönisch, Sandra Díaz, John Dickie, … Peter B. Reich
Global Ecology and Biogeography (2015-12) https://doi.org/f76qw8
DOI: 10.1111/geb.12335

43. Scaling from Traits to Ecosystems
Brian J. Enquist, Jon Norberg, Stephen P. Bonser, Cyrille Violle, Colleen T. Webb, Amanda Henderson, Lindsey L. Sloat, Van M. Savage
Advances in Ecological Research (2015) https://doi.org/ghfnsw
DOI: 10.1016/bs.aecr.2015.02.001

44. Communities and Ecosystems
R. H. Whittaker
Macmillan Publishing Co. Inc. (1975)

45. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats
Milan Chytrý, Lubomír Tichý, Stephan M. Hennekens, Ilona Knollová, John A. M. Janssen, John S. Rodwell, Tomáš Peterka, Corrado Marcenò, Flavia Landucci, Jiří Danihelka, … Joop H. J. Schaminée
Applied Vegetation Science (2020-08-16) https://doi.org/ghf4dn
DOI: 10.1111/avsc.12519

46. TURBOVEG, a comprehensive data base management system for vegetation data
Stephan M. Hennekens, Joop H. J. Schaminée
Journal of Vegetation Science (2001-02-24) https://doi.org/cgmn6m
DOI: 10.2307/3237010

47. The taxonomic name resolution service: an online tool for automated standardization of plant names
Brad Boyle, Nicole Hopkins, Zhenyuan Lu, Juan Antonio Raygoza Garay, Dmitry Mozzherin, Tony Rees, Naim Matasci, Martha L Narro, William H Piel, Sheldon J Mckay, … Brian J Enquist
BMC Bioinformatics (2013-01-16) https://doi.org/gb8vxz
DOI: 10.1186/1471-2105-14-16 · PMID: 23324024 · PMCID: PMC3554605

48. Oliverpurschke/Taxonomic_Backbone: First Release Of The Workflow To Generate The Taxonomic Backbone For Splot V.2.1 And Try V.3.0
Oliver Purschke
Zenodo (2017-08-18) https://doi.org/ghf4ph
DOI: 10.5281/zenodo.845445

49. Open collaborative writing with Manubot
Daniel S. Himmelstein, Vincent Rubinetti, David R. Slochower, Dongbo Hu, Venkat S. Malladi, Casey S. Greene, Anthony Gitter
PLOS Computational Biology (2019-06-24) https://doi.org/c7np
DOI: 10.1371/journal.pcbi.1007128 · PMID: 31233491 · PMCID: PMC6611653

50. Database Dry Grasslands in the Nordic and Baltic Region
Jürgen Dengler, Solvita Rūsiņa
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcv
DOI: 10.7809/b-e.00114

51. Vegetation-Plot Database of the University of the Basque Country (BIOVEG)
Idoia Biurrun, Itziar García-Mijangos, Juan Campos, Mercedes Herrera, Javier Loidi
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgt9d
DOI: 10.7809/b-e.00121

52. Balkan Dry Grasslands Database
Kiril Vassilev, Zora Dajiś, Renata Cušterevska, Erwin Bergmeier, Iva Apostolova
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcw
DOI: 10.7809/b-e.00123

53. The Mediterranean Ammophiletea Database: a comprehensive dataset of coastal dune vegetation
Corrado Marcenò, Borja Jiménez-Alfaro
Phytocoenologia (2016) https://doi.org/ghgt83
DOI: 10.1127/phyto/2016/0133

54. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe
Jonathan Lenoir, Bente Jessen Graae, Per Arild Aarrestad, Inger Greve Alsos, W. Scott Armbruster, Gunnar Austrheim, Claes Bergendorff, H. John B. Birks, Kari Anne Bråthen, Jörg Brunet, … Jens-Christian Svenning
Global Change Biology (2013-05) https://doi.org/f24bdd
DOI: 10.1111/gcb.12129 · PMID: 23504984

55. Balkan Vegetation Database: historical background, current status and future perspectives
Kiril Vassilev, Hristo Pedashenko, Alexandra Alexandrova, Alexandar Tashev, Anna Ganeva, Anna Gavrilova, Asya Gradevska, Assen Assenov, Antonina Vitkova, Borislav Grigorov, … Vladimir Vulchev
Phytocoenologia (2016-06-01) https://doi.org/f8sjft
DOI: 10.1127/phyto/2016/0109

56. WetVegEurope: a database of aquatic and wetland vegetation of Europe
Flavia Landucci, Marcela Řezníčková, Kateřina Šumberová, Milan Chytrý, Liene Aunina, Claudia Biţă-Nicolae, Alexander Bobrov, Lyubov Borsukevych, Henry Brisse, Andraž Čarni, … Wolfgang Willner
Phytocoenologia (2015-07-01) https://doi.org/bdmw
DOI: 10.1127/phyto/2015/0050

57. European Mire Vegetation Database: a gap-oriented database for European fens and bogs
Tomáš Peterka, Martin Jiroušek, Michal Hájek, Borja Jiménez-Alfaro
Phytocoenologia (2015-11-01) https://doi.org/f724p4
DOI: 10.1127/phyto/2015/0054

58. Vegetation Database of Albania
Michele De Sanctis, Giuliano Fanelli, Alfred Mullaj, Fabio Attorre

Phytocoenologia (2017-01-01) https://doi.org/ghgt85
DOI: 10.1127/phyto/2017/0178

59. Austrian Vegetation Database
Wolfgang Willner, Christian Berg, Paul Heiselmayer
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcx
DOI: 10.7809/b-e.00125

60. Bulgarian Vegetation Database: historic background, current status and future prospects
Iva Apostolova, Desislava Sopotlieva, Hristo Pedashenko, Nikolay Velev, Kiril Vasilev
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvch
DOI: 10.7809/b-e.00069

61. Swiss Forest Vegetation Database
Thomas Wohlgemuth
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcz
DOI: 10.7809/b-e.00131

62. Czech National Phytosociological Database: basic statistics of the available vegetation‐plot data
M. Chytrý, M. Rafajová
Preslia (2003)

63. VegMV – the vegetation database of Mecklenburg-Vorpommern
Florian Jansen, Jürgen Dengler, Christian Berg
Biodiversity & Ecology (2012-09-10) https://doi.org/gftw54
DOI: 10.7809/b-e.00070

64. VegetWeb – the national online-repository of vegetation plots from Germany
Jörg Ewald, Rudolf May, Martin Kleikamp
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcj
DOI: 10.7809/b-e.00073

65. German Vegetation Reference Database (GVRD)
Ute Jandt, Helge Bruelheide
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvc2
DOI: 10.7809/b-e.00146

66. Hellenic Natura 2000 Vegetation Database (HelNatVeg)
Panayotis Dimopoulos, Ioannis Tsiripidis
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvc3
DOI: 10.7809/b-e.00177

67. Hellenic Woodland Database
Georgios Fotiadis, Ioannis Tsiripidis, Erwin Bergmeier, Panayotis Dimopolous
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvc4
DOI: 10.7809/b-e.00178

68. Phytosociological Database of Non-Forest Vegetation in Croatia
Zvjezdana Stancic
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgt9f
DOI: 10.7809/b-e.00180

69. Hungarian Phytosociological database (COENODATREF): sampling methodology, nomenclature and its actual stage
K Lájer, Z. Botta‐Dukát, J. Csiky, F. Horváth, F. Szmorad, I. Bagi, T. Rédei
Annali di Botanica, Nuova Serie (2008)

70. VegItaly: The Italian collaborative project for a national vegetation database
F. Landucci, A. T. R. Acosta, E. Agrillo, F. Attorre, E. Biondi, V. E. Cambria, A. Chiarucci, E. Del Vico, M. De Sanctis, L. Facioni, … R. Venanzoni
Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology (2012-12) https://doi.org/ghgt8x
DOI: 10.1080/11263504.2012.740093

71. Italian National Vegetation Database (BVN/ISPRA)
Laura Casella, Pietro Massimiliano Bianco, Pierangela Angelini, Emi Morroni
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvc6
DOI: 10.7809/b-e.00192

72. Nationwide Vegetation Plot Database – Sapienza University of Rome: state of the art, basic figures and future perspectives
Emiliano Agrillo*, Nicola Alessi, Marco Massimi, Francesco Spada, Michele De Sanctis
Phytocoenologia (2017-07-20) https://doi.org/gbsxm9
DOI: 10.1127/phyto/2017/0139

73. Semi-natural Grassland Vegetation Database of Latvia
Solvita Rūsiņa
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgt9g
DOI: 10.7809/b-e.00197

74. Schatten voor de natuur. Achtergronden, inventaris en toepassingen van de Landelijke Vegetatie Databank
J. H. J. Schaminée, J. A. M. Janssen, R. Haveman, S. M. Hennekens, G. B. M. Heuvelink, H. P. J. Huiskes, E. J. Weeda
KNNV Uitgeverij (2006)

75. The Polish Vegetation Database: structure, resources and development
Zygmunt Kącki, Michał Śliwiński
Acta Societatis Botanicorum Poloniae (2012) https://doi.org/f34f3k
DOI: 10.5586/asbp.2012.014

76. Romanian Forest Database: a phytosociological archive of woody vegetation
Adrian Indreica, Pavel Dan Turtureanu, Anna Szabó, Irina Irimia

Phytocoenologia (2017-12-01) https://doi.org/ghgt86
DOI: 10.1127/phyto/2017/0201

77. The Romanian Grassland Database (RGD): historical background, current status and future perspectives
Kiril Vassilev, Eszter Ruprecht, Valeriu Alexiu, Thomas Becker, Monica Beldean, Claudia Biță-Nicolae, Anna Mária Csergő, Iliana Dzhovanova, Eva Filipova, József Pál Frink, … Jürgen Dengler
Phytocoenologia (2018-03-01) https://doi.org/gc79hp
DOI: 10.1127/phyto/2017/0229

78. Vegetation Database Grassland Vegetation of Serbia
Svetlana Aćić, Milicia Petrović, Urban Šilc, Zora Dajić Stevanović
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgt9h
DOI: 10.7809/b-e.00206

79. Lower Volga Valley Phytosociological Database
Alexey Sorokin, Valentin Golub, Kseniya Starichkova, Lyudmila Nikolaychuk, Viktoria Bondareva, Tatyana Ivakhnova
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgt9j
DOI: 10.7809/b-e.00207

80. Vegetation Database of the Volga and the Ural Rivers Basins
Tatiana Lysenko, Olga Kalmykova, Anna Mitroshenkova
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvc7
DOI: 10.7809/b-e.00208

81. Vegetation Database of Tatarstan
Vadim Prokhorov, Tatiana Rogova, Maria Kozhevnikova
Phytocoenologia (2017-09-27) https://doi.org/ghgt84
DOI: 10.1127/phyto/2017/0172

82. Vegetation Database of Slovenia
Urban Šilc
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgt9k
DOI: 10.7809/b-e.00215

83. Slovak Vegetation Database
Jozef Šibík
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgt9m
DOI: 10.7809/b-e.00216

84. The West African Vegetation Database
Marco Schmidt, Thomas Janßen, Stefan Dressler, Karen Hahn, Mipro Hien, Souleymane Konaté, Anne Mette Lykke, Ali Mahamane, Bienvenu Sambou, Brice Sinsin, … Georg Zizka
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcf
DOI: 10.7809/b-e.00065

85. Zur Vegetationsökologie der Savannenlandschaften im Sahel Burkina Fasos
J. Müller
FB Biologie und Informatik, J.W. Goethe‐Universität Frankfurt a.M (2003)

86. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data
Gabriela Lopez-Gonzalez, Simon L. Lewis, Mark Burkitt, Oliver L. Phillips
Journal of Vegetation Science (2011-08) https://doi.org/dz6zb3
DOI: 10.1111/j.1654-1103.2011.01312.x

87. Plot-scale evidence of tundra vegetation change and links to recent summer warming
Sarah C. Elmendorf, Gregory H. R. Henry, Robert D. Hollister, Robert G. Björk, Noémie Boulanger-Lapointe, Elisabeth J. Cooper, Johannes H. C. Cornelissen, Thomas A. Day, Ellen Dorrepaal, Tatiana G. Elumeeva, … Sonja Wipf
Nature Climate Change (2012-04-08) https://doi.org/f223nb
DOI: 10.1038/nclimate1465

88. Database of Masaryk University’s Vegetation Research in Siberia
Milan Chytrý
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcp
DOI: 10.7809/b-e.00088

89. BIOTA Southern Africa Biodiversity Observatories Vegetation Database
Gerhard Muche, Ute Schmiedel, Norbert Jürgens
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcg
DOI: 10.7809/b-e.00066

90. Vegetation Database of the Okavango Basin
Rasmus Revermann, Amândio Luis Gomes, Francisco Maiato Gonçalves, Johannes Wallenfang, Torsten Hoche, Norbert Jürgens, Manfred Finckh
Phytocoenologia (2016-06-01) https://doi.org/ghgt82
DOI: 10.1127/phyto/2016/0103

91. Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin
Elizabeth Kearsley, Thales de Haulleville, Koen Hufkens, Alidé Kidimbu, Benjamin Toirambe, Geert Baert, Dries Huygens, Yodit Kebede, Pierre Defourny, Jan Bogaert, … Hans Verbeeck
Nature Communications (2013-08-05) https://doi.org/ghgt8w
DOI: 10.1038/ncomms3269 · PMID: 23912554

92. Responses of plant functional types to environmental gradients in the south-west Ethiopian highlands
Desalegn Wana, Carl Beierkuhnlein
Journal of Tropical Ecology (2011-03-10) https://doi.org/b6mtmx
DOI: 10.1017/s0266467410000799

93. Vegetation Database of Southern Morocco
Manfred Finckh
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcq
DOI: 10.7809/b-e.00094

94. {Das Weidepotential im Gutu‐Distrikt (Zimbabwe) – Möglichkeiten und Grenzen der Modellierung unter Verwendung von Landsat TM‐5
C. Samimi
Karlsruher Schriften zur Geographie und Geoökologie (2003)

95. Classification of Korean forests: patterns along geographic and environmental gradients
Tomáš Černý, Martin Kopecký, Petr Petřík, Jong-Suk Song, Miroslav Šrůtek, Milan Valachovič, Jan Altman, Jiří Doležal
Applied Vegetation Science (2015-01) https://doi.org/ghgt8z
DOI: 10.1111/avsc.12124

96. Vegetation of Middle Asia – the project state of art after ten years of survey and future perspectives
Arkadiusz Nowak, Marcin Nobis, Sylwia Nowak, Agnieszka Nobis, Grzegorz Swacha, Zygmunt Kącki
Phytocoenologia (2017-12-01) https://doi.org/gctffg
DOI: 10.1127/phyto/2017/0208

97. Vegetation of the woodland-steppe transition at the southeastern edge of the Inner Mongolian Plateau
Hongyan Liu, Haiting Cui, Richard Pott, Martin Speier
Journal of Vegetation Science (2000-08) https://doi.org/cxr92b
DOI: 10.2307/3246582

98. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet
Yun Wang, Gwendolyn Heberling, Eugen Görzen, Georg Miehe, Elke Seeber, Karsten Wesche
Applied Vegetation Science (2017-07) https://doi.org/gbkd6v
DOI: 10.1111/avsc.12312

99. Community assembly during secondary forest succession in a Chinese subtropical forest
Helge Bruelheide, Martin Böhnke, Sabine Both, Teng Fang, Thorsten Assmann, Martin Baruffol, Jürgen Bauhus, François Buscot, Xiao-Yong Chen, Bing-Yang Ding, … Bernhard Schmid
Ecological Monographs (2011-02) https://doi.org/dmwpsm
DOI: 10.1890/09-2172.1

100. Vegetation Database of Sinai in Egypt
Mohamed Hatim
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcr
DOI: 10.7809/b-e.00099

101. Eurosiberian meadows at their southern edge: patterns and phytogeography in the NW Tien Shan
Viktoria Wagner
Journal of Vegetation Science (2009-03-25) https://doi.org/ftq2r6
DOI: 10.1111/j.1654-1103.2009.01032.x

102. Plant communities of the southern Mongolian Gobi
Henrik von Wehrden, Karsten Wesche, Georg Miehe
Phytocoenologia (2009-10-21) https://doi.org/ddvj9h
DOI: 10.1127/0340-269x/2009/0039-0331

103. Wetland Vegetation Database of Baikal Siberia (WETBS)
Victor Chepinoga
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcs
DOI: 10.7809/b-e.00107

104. Eastern Pamirs – A vegetation-plot database for the high mountain pastures of the Pamir Plateau (Tajikistan)
Kim André Vanselow
Phytocoenologia (2016-06-01) https://doi.org/f952sp
DOI: 10.1127/phyto/2016/0122

105. Socotra Vegetation Database
Michele De Sanctis, Fabio Attorre
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvct
DOI: 10.7809/b-e.00111

106. Terrestrial Ecosystem Research Infrastructures
Informa UK Limited
(2017-03-03) https://doi.org/ghgt87
DOI: 10.1201/9781315368252

107. Structural and floristic diversity of mixed tropical rain forest in New Caledonia: new data from the New Caledonian Plant Inventory and Permanent Plot Network (NC-PIPPN)
Thomas Ibanez, Jérôme Munzinger, Gilles Dagostini, Vanessa Hequet, Frédéric Rigault, Tanguy Jaffré, Philippe Birnbaum
Applied Vegetation Science (2014-07) https://doi.org/f57bfw
DOI: 10.1111/avsc.12070

108. Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank
S. K. Wiser, P. J. Bellingham, L. E. Burrows
New Zealand Journal of Ecology (2001)

109. Species Richness, Forest Structure, and Functional Diversity During Succession in the New Guinea Lowlands
Timothy J. S. Whitfeld, Jesse R. Lasky, Kipiro Damas, Gibson Sosanika, Kenneth Molem, Rebecca A. Montgomery
Biotropica (2014-09) https://doi.org/f6hf36
DOI: 10.1111/btp.12136

110. The Tree Biodiversity Network (BIOTREE-NET): prospects for biodiversity research and conservation in the Neotropics
Luis Cayuela, Lucía Gálvez-Bravo, Ramón Pérez Pérez, Fábio de Albuquerque, Duncan Golicher, Rakan Zahawi, Neptalí Ramírez-Marcial, Cristina Garibaldi, Richard Field, José Rey Benayas, … Regino Zamora
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvck
DOI: 10.7809/b-e.00078

111. Timberline meadows along a 1000-km transect in NW North America: species diversity and community patterns
Viktoria Wagner, Toby Spribille, Stefan Abrahamczyk, Erwin Bergmeier
Applied Vegetation Science (2014-01) https://doi.org/f5mpvm
DOI: 10.1111/avsc.12045

112. How resilient are northern hardwood forests to human disturbance? An evaluation using a plant functional group approach
I. Aubin, S. Gachet, C. Messier, A. Bouchard
Ecoscience (2007)

113. Vegetation and altitudinal zonation in continental West Greenland
B. Sieg, B. Drees, F. J. A. Daniëls
Meddelelser om Grønland Bioscience (2006)

114. VegBank – a permanent, open-access archive for vegetation-plot data
Robert Peet, Michael Lee, Michael Jennings, Don Faber-Langendoen
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcm
DOI: 10.7809/b-e.00080

115. Vegetation-plot database of the Carolina Vegetation Survey
Robert Peet, Michael Lee, Forbes Boyle, Thomas Wentworth, Michael Schafale, Alan Weakley
Biodiversity & Ecology (2012-09-10) https://doi.org/ghgvcn
DOI: 10.7809/b-e.00081

116. The Alaska Arctic Vegetation Archive (AVA-AK)
Donald A. Walker, Amy L. Breen, Lisa A. Druckenmiller, Lisa W. Wirth, Will Fisher, Martha K. Raynolds, Jozef Šibík, Marilyn D. Walker, Stephan Hennekens, Keith Boggs, … Donatella Zona
Phytocoenologia (2016-09-01) https://doi.org/f877ht
DOI: 10.1127/phyto/2016/0128

117. VegPáramo, a flora and vegetation database for the Andean páramo
Gwendolyn Peyre, Henrik Balslev, David Martí, Petr Sklenář, Paul Ramsay, Pablo Lozano, Nidia Cuello, Rainer Bussmann, Omar Cabrera, Xavier Font
Phytocoenologia (2015-07-01) https://doi.org/f7m9cj
DOI: 10.1127/phyto/2015/0045

118. The Floristic and Forest Inventory of Santa Catarina State (IFFSC): methodological and operational aspects
A. C. Vibrans, L. Sevgnani, D. V. Lingner, A. L. Gasper, S. Sabbagh
Pesquisa Florestal Brasileira (2010)

119. Plant Invasions in Protected Areas
Springer Netherlands
(2013) https://doi.org/ghgt8v
DOI: 10.1007/978-94-007-7750-7

Supplementary Material

Table 1: List of databases contributing to the open access dataset extracted from the sPlot database. Databases are ordered based on their ID in the Global Index of Vegetation Databases (GVID ID).
GIVD ID Dataset name Custodian Deputy custodian Nr. OA plots Ref
00-00-004 Vegetation Database of Eurasian Tundra Risto Virtanen 600
00-RU-003 Database Meadows and Steppes of Southern Ural Sergey Yamalov Mariya Lebedeva 99
00-TR-001 Forest Vegetation Database of Turkey - FVDT Ali Kavgacı 15
EU-00-002 Nordic-Baltic Grassland Vegetation Database (NBGVD) Jürgen Dengler Łukasz Kozub 931 50
EU-00-011 Vegetation-Plot Database of the University of the Basque Country (BIOVEG) Idoia Biurrun Itziar García-Mijangos 1694 51
EU-00-013 Balkan Dry Grasslands Database Kiril Vassilev Armin Macanović 224 52
EU-00-016 Mediterranean Ammophiletea Database Corrado Marcenò Borja Jiménez-Alfaro 3713 53
EU-00-017 European Coastal Vegetation Database John Janssen 1369
EU-00-018 The Nordic Vegetation Database Jonathan Lenoir Jens-Christian Svenning 1755 54
EU-00-019 Balkan Vegetation Database Kiril Vassilev Hristo Pedashenko 211 55
EU-00-020 WetVegEurope Flavia Landucci 61 56
EU-00-022 European Mire Vegetation Database Tomáš Peterka Martin Jiroušek 1843 57
EU-AL-001 Vegetation Database of Albania Michele De Sanctis Giuliano Fanelli 99 58
EU-AT-001 Austrian Vegetation Database Wolfgang Willner Christian Berg 950 59
EU-BE-002 INBOVEG Els De Bie 48
EU-BG-001 Bulgarian Vegetation Database Iva Apostolova Desislava Sopotlieva 74 60
EU-CH-005 Swiss Forest Vegetation Database Thomas Wohlgemuth 1409 61
EU-CZ-001 Czech National Phytosociological Database Milan Chytrý Ilona Knollová 579 62
EU-DE-001 VegMV Florian Jansen Christian Berg 5 63
EU-DE-013 VegetWeb Germany Florian Jansen Jörg Ewald 199 64
EU-DE-014 German Vegetation Reference Database (GVRD) Ute Jandt Helge Bruelheide 286 65
EU-DK-002 National Vegetation Database of Denmark Jesper Erenskjold Moeslund Rasmus Ejrnæs 1181
EU-ES-001 Iberian and Macaronesian Vegetation Information System (SIVIM) - Wetlands Aaron Pérez-Haase Xavier Font 292
EU-FR-003 SOPHY Emmanuel Garbolino Patrice De Ruffray 13322
EU-GB-001 UK National Vegetation Classification Database John S. Rodwell 5457
EU-GR-001 KRITI Erwin Bergmeier 43
EU-GR-005 Hellenic Natura 2000 Vegetation Database (HelNatVeg) Panayotis Dimopoulos Ioannis Tsiripidis 777 66
EU-GR-006 Hellenic Woodland Database Ioannis Tsiripidis Georgios Fotiadis 4 67
EU-HR-001 Phytosociological Database of Non-Forest Vegetation in Croatia Zvjezdana Stančić 213 68
EU-HR-002 Croatian Vegetation Database Željko Škvorc Daniel Krstonošić 688
EU-HU-003 CoenoDat Hungarian Phytosociological Database János Csiky Zoltán Botta-Dukát 17 69
EU-IT-001 VegItaly Roberto Venanzoni Flavia Landucci 2712 70
EU-IT-010 Italian National Vegetation Database (BVN/ISPRA) Laura Casella Pierangela Angelini 155 71
EU-IT-011 Vegetation-Plot Database Sapienza University of Rome (VPD-Sapienza) Emiliano Agrillo Fabio Attorre 1003 72
EU-LT-001 Lithuanian Vegetation Database Valerijus Rašomavičius Domas Uogintas 119
EU-LV-001 Semi-natural Grassland Vegetation Database of Latvia Solvita Rūsiņa 306 73
EU-MK-001 Vegetation Database of the Republic of Macedonia Renata Ćušterevska 10
EU-NL-001 Dutch National Vegetation Database Joop H.J. Schaminée Stephan M. Hennekens 10223 74
EU-PL-001 Polish Vegetation Database Zygmunt Kącki Grzegorz Swacha 464 75
EU-RO-007 Romanian Forest Database Adrian Indreica Pavel Dan Turtureanu 60 76
EU-RO-008 Romanian Grassland Database Eszter Ruprecht Kiril Vassilev 44 77
EU-RS-002 Vegetation Database Grassland Vegetation of Serbia Svetlana Aćić Zora Dajić Stevanović 57 78
EU-RU-002 Lower Volga Valley Phytosociological Database Valentin Golub Viktoria Bondareva 149 79
EU-RU-003 Vegetation Database of the Volga and the Ural Rivers Basins Tatiana Lysenko 96 80
EU-RU-011 Vegetation Database of Tatarstan Vadim Prokhorov Maria Kozhevnikova 94 81
EU-SI-001 Vegetation Database of Slovenia Urban Šilc Filip Küzmič 435 82
EU-SK-001 Slovak Vegetation Database Milan Valachovič Jozef Šibík 893 83
EU-UA-006 Vegetation Database of Ukraine and Adjacent Parts of Russia Viktor Onyshchenko Vitaliy Kolomiychuk 479
AF-00-001 West African Vegetation Database Marco Schmidt Georg Zizka 184 84
AF-00-008 PANAF Vegetation Database Hjalmar Kühl TeneKwetche Sop 942
AF-BF-001 Sahel Vegetation Database Jonas V. Müller Marco Schmidt 279 85
00-00-001 ForestPlots.net Oliver L. Phillips Aurora Levesley 108 86
00-00-003 SALVIAS Brian Enquist Brad Boyle 2860
00-00-005 Tundra Vegetation Plots (TundraPlot) Anne D. Bjorkman Sarah Elmendorf 227 87
00-RU-002 Database of Masaryk University`s Vegetation Research in Siberia Milan Chytrý 128 88
AF-00-003 BIOTA Southern Africa Biodiversity Observatories Vegetation Database Norbert Jürgens Ute Schmiedel 562 89
AF-00-006 SWEA-Dataveg Miguel Alvarez Michael Curran 1211
AF-00-009 Vegetation Database of the Okavango Basin Rasmus Revermann Manfred Finckh 202 90
AF-CD-001 Forest Database of Central Congo Basin Kim Sarah Jacobsen Hans Verbeeck 97 91
AF-ET-001 Vegetation Database of Ethiopia Desalegn Wana Anke Jentsch 59 92
AF-MA-001 Vegetation Database of Southern Morocco Manfred Finckh 266 93
AF-ZW-001 Vegetation Database of Zimbabwe Cyrus Samimi 17 94
AS-00-001 Korean Forest Database Tomáš Černý Jiri Dolezal 766 95
AS-00-003 Vegetation of Middle Asia Arkadiusz Nowak Marcin Nobis 128 96
AS-00-004 Rice Field Vegetation Database Arkadiusz Nowak 31
AS-BD-001 Tropical Forest Dataset of Bangladesh Mohammed A.S. Arfin Khan Fahmida Sultana 82
AS-CN-001 China Forest-Steppe Ecotone Database Hongyan Liu Fengjun Zhao 97 97
AS-CN-002 Tibet-PaDeMoS Grazing Transect Karsten Wesche 27 98
AS-CN-003 Vegetation Database of the BEF China Project Helge Bruelheide 18 99
AS-CN-004 Vegetation Database of the Northern Mountains in China Zhiyao Tang 70
AS-EG-001 Vegetation Database of Sinai in Egypt Mohamed Z. Hatim 98 100
AS-ID-001 Sulawesi Vegetation Database Michael Kessler 24
AS-IR-001 Vegetation Database of Iran Jalil Noroozi Parastoo Mahdavi 105
AS-KZ-001 Database of Meadow Vegetation in the NW Tien Shan Mountains Viktoria Wagner 3 101
AS-MN-001 Southern Gobi Protected Areas Database Henrik von Wehrden Karsten Wesche 688 102
AS-RU-001 Wetland Vegetation Database of Baikal Siberia (WETBS) Victor Chepinoga 6 103
AS-RU-002 Database of Siberian Vegetation (DSV) Andrey Korolyuk Andrei Zverev 2150
AS-RU-004 Database of the University of Münster - Biodiversity and Ecosystem Research Group’s Vegetation Research in Western Siberia and Kazakhstan Norbert Hölzel Wanja Mathar 85
AS-SA-001 Vegetation Database of Saudi Arabia Mohamed Abd El-Rouf Mousa El-Sheikh 607
AS-TJ-001 Eastern Pamirs Kim André Vanselow 174 104
AS-TW-001 National Vegetation Database of Taiwan Ching-Feng Li Chang-Fu Hsieh 897
AS-YE-001 Socotra Vegetation Database Michele De Sanctis Fabio Attorre 190 105
AU-AU-002 AEKOS Anita Smyth Ben Sparrow 7443 106
AU-NC-001 New Caledonian Plant Inventory and Permanent Plot Network (NC-PIPPN) Jérôme Munzinger Philippe Birnbaum 98 107
AU-NZ-001 New Zealand National Vegetation Databank Susan Wiser 983 108
AU-PG-001 Forest Plots from Papua New Guinea Timothy Whitfeld George D. Weiblen 53 109
NA-00-002 Tree Biodiversity Network (BIOTREE-NET) Luis Cayuela 208 110
NA-CA-003 Database of Timberline Vegetation in NW North America Viktoria Wagner Toby Spribille 38 111
NA-CA-004 Understory of Sugar Maple Dominated Stands in Quebec and Ontario (Canada) Isabelle Aubin 9 112
NA-CA-005 Boreal Forest of Canada Yves Bergeron Louis De Grandpré 44
NA-GL-001 Vegetation Database of Greenland Birgit Jedrzejek Fred J.A. Daniëls 340 113
NA-US-002 VegBank Robert K. Peet Michael T. Lee 6456 114
NA-US-006 Carolina Vegetation Survey Database Robert K. Peet Michael T. Lee 2317 115
NA-US-014 Alaska-Arctic Vegetation Archive Donald A. Walker Amy Breen 467 116
SA-00-002 VegPáramo Gwendolyn Peyre Xavier Font 1591 117
SA-AR-002 Vegetation Database of Central Argentina Melisa Giorgis Alicia Acosta 42
SA-BO-003 Bolivia Forest Plots Michael Kessler Sebastian Herzog 18
SA-BR-002 Forest Inventory, State of Santa Catarina, Brazil (IFFSC Project) Alexander Christian Vibrans André Luis de Gasper 1345 118
SA-BR-003 Grasslands of Rio Grande do Sul, Brazil Eduardo Vélez-Martin Valério De Patta Pillar 271
SA-BR-004 Grassland Database of Campos Sulinos Gerhard E. Overbeck Valério De Patta Pillar 111
SA-CL-002 SSAForests_Plots_db Alvaro G. Gutierrez 163
SA-CL-003 Chilean Park Transects - Fondecyt 1040528 Aníbal Pauchard Alicia Marticorena 33 119
SA-EC-001 Ecuador Forest Plot Database Jürgen Homeier 156
Table 2: Description of the variables contained in the ‘header’ matrix, together with their range (if numeric) or possible levels (if nominal or binary). Variable types can be n - nominal (i.e. qualitative variable), q - quantitative, or b - binary (i.e., boolean), or d - date.
Variable Range/Levels Unit of Measurement Nr. Records Type
GIVD_ID 91031 n
Dataset 91031 n
Continent Africa, Asia, Australia, Europe, North America, Oceania, South America 90729 n
Country 91031 n
Biome Alpine, Boreal zone, Dry midlatitudes, Dry tropics and subtropics, Polar and subpolar zone, Subtrop. with year-round rain, Subtropics with winter rain, Temperate midlatitudes, Tropics with summer rain, Tropics with year-round rain 91031 n
Date -29764 - 16469 75798 q
Latitude -54.73863 - 80.149116 ° (WGS84) 91031 q
Longitude -162.741433 - 179.590053 ° (WGS84) 91031 q
Location_uncertainty 1 - 2500 m 91002 q
Releve_area 0.01 - 40000 m2 61898 q
Herbs_identified FALSE = 4876; TRUE = 6323 11199 b
Plant_recorded All trees & dominant understory, All vascular plants, All vascular plants and dominant cryptogams, All woody plants, Dominant trees, Only dominant species, Dominant woody plants >= 2.5 cm dbh, Woody plants >= 10 cm dbh, Woody plants >= 1 m height, Woody plants >= 1 cm dbh, Woody plants >= 20 cm dbh, Woody plants >= 2.5 cm dbh, Woody plants >= 5 cm dbh, NA 91015 n
Elevation -25 - 4819 m a.s.l. 52121 q
Aspect 0 - 360 ° 30796 q
Slope 0 - 99 ° 37784 q
is_forest FALSE = 20396; TRUE = 25832 46228 b
is_nonforest FALSE = 50870; TRUE = 38203 89073 b
ESY 55457 n
Naturalness 1 - 2 68011 q
Forest FALSE = 38295; TRUE = 23735 62030 b
Shrubland FALSE = 38233; TRUE = 11081 49314 b
Grassland FALSE = 10213; TRUE = 46947 57160 b
Sparse_vegetation FALSE = 33381; TRUE = 11315 44696 b
Wetland FALSE = 29078; TRUE = 18038 47116 b
Cover_total 1 - 313 % 24712 q
Cover_tree_layer 0.5 - 150 % 7245 q
Cover_shrub_layer 0.5 - 145 % 10197 q
Cover_herb_layer 0.2 - 180 % 26679 q
Cover_moss_layer 1 - 100 % 9643 q
Cover_lichen_layer 1 - 95 % 734 q
Cover_algae_layer 1 - 100 % 221 q
Cover_litter_layer 1 - 100 % 4500 q
Cover_bare_rocks 1 - 100 % 1897 q
Cover_cryptogams 1 - 95 % 593 q
Cover_bare_soil 0.1 - 99 % 1412 q
Height_trees_highest 1 - 99 m 6115 q
Height_trees_lowest 1 - 90 m 221 q
Height_shrubs_highest 0.1 - 9.9 m 2880 q
Height_shrubs_lowest 0.1 - 9 m 328 q
Height_herbs_average 0.1 - 440 cm 10125 q
Height_herbs_lowest 1 - 250 cm 2785 q
Height_herbs_highest 1 - 600 cm 1733 q